Popular Post

Popular Posts

Posted by : Unknown Jumat, 14 April 2017

Pada tugas softskill ini akan menjelaskan mengenai Map Reduce dan NoSQL. NoSQL sendiri kurang lebih adalah sebuah memcache dari bagian database sederhana yang berisi key dan value. Database ini bersifat struktur storage dimana sistem databasenya yang berbeda dengan sistem database relasional. Nosql tidak membutuhkan skema table dan menghindari operasi join dan berkembang secara horizontal. Selain itu NoSQL merupakan suatu bahasan yang jauh dari arti kata yang dibaca. Tidak berarti tanpa sql query. Melainkan bagaimana suatu sql query digunakan seminimal mungkin dalam suatu program database. Dengan memanfaatkan teknologi NoSQL ini, diharapkan mampu mengurangi beban server. Selain itu, hal ini juga memudahkan programmer dalam membuat suatu program dan proses pengembangannya. Penjelasan lebih mengenai NoSQL database akan dijelaskan pada sub bab dibawah ini.

Database NoSQL, juga disebut Not Only SQL, adalah sebuah pendekatan untuk pengelolaan datadan desain database yang berguna untuk set yang sangat besar data terdistribusi. NoSQL, yang mencakup berbagai teknologi dan arsitektur, berusaha untuk memecahkan masalah skala bilitas dan kinerja data yang besar yang database relasional tidak dirancang untuk menangani.NoSQL ini sangat berguna ketika perusahaan perlu untuk mengakses dan menganalisis sejumlah besar data terstruktur atau data yang disimpan dari jarak jauh pada beberapa virtual server di awan.
 
Contoh dari database yang menggunakan konsep NoSQL seperti MongoDB, Cassandra, dan CouchDB.
Map Reduce danNoSQL (Not Only SQL)
Map Reduce danNoSQL (Not Only SQL) adalah sebuah pemogramaan framework guna untuk membantu user mengembangankan sebuah data yang ukuran besar dapat terdistribusi satu sama lain. Map-Reduce adalah salah satu konsep teknis yang sangat penting di dalam teknologi cloud terutama karena dapat diterapkannya dalam lingkungan distributed computing. Dengan demikian akan menjamin skalabilitas aplikasi kita.
Salah satu contoh penerapan nyata map-reduce ini dalam suatu produk adalah yang dilakukan Google. Dengan inspirasi dari functional programming map dan reduce Google bisa menghasilkan filesystem distributed yang sangat scalable, Google Big Table. Dan juga terinspirasi dari Google, pada ranah open source terlihat percepatan pengembangan framework lainnya yang juga bersifat terdistribusi dan menggunakan konsep yang sama, project open source tersebut bernama Apache Hadoop.
NoSQL adalah istilah untuk menyatakan berbagai hal yang didalamnya termasuk database sederhana yang berisikan key dan value seperti Memcache, ataupun yang lebih canggih yaitu non-database relational seperti MongoDBCassandraCouchDB, dan yang lainnya.
Wikipedia menyatakan NoSQL adalah sistem menejemen database yang berbeda dari sistem menejemen database relasional yang klasik dalam beberapa hal. NoSQL mungkin tidak membutuhkan skema table dan umumnya menghindari operasi join dan berkembang secara horisontal. Akademisi menyebut database seperti ini sebagai structured storage, istilah yang didalamnya mencakup sistem menejemen database relasional.
 Tutorial Map Reduce pada MongoDB
Berikut adalah video tentang tutorial map reduce pada MongoDB
 
 
  
Desain dan Struktur, MapReduce itu sederhana.
Dari definisinya, MapReduce mungkin terkesan sangat ribet. Untuk memproses sebuah data raksasa, data itu harus dipotong-potong kemudian dibagi-bagikan ke tiap komputer dalam suatu cluster. Lalu proses Map dan proses Reduce pun harus dibagi-bagikan ke tiap komputer dan dijalankan secara paralel. Terus hasil akhirnya juga disimpan secara terdistribusi. Benar-benar terkesan merepotkan.
Beruntunglah, MapReduce telah didesain sangat sederhana alias simple. Untuk menggunakan MapReduce, seorang programer cukup membuat dua program yaitu program yang memuat kalkulasi atau prosedur yang akan dilakukan oleh proses Map dan Reduce. Jadi tidak perlu pusing memikirkan bagaimana memotong-motong data untuk dibagi-bagikan kepada tiap komputer, dan memprosesnya secara paralel kemudian mengumpulkannya kembali. Semua proses ini akan dikerjakan secara otomatis oleh MapReduce yang dijalankan diatas Google File System (Gambar 1).
Gambar 1. Map dan Reduce
Program yang memuat kalkulasi yang akan dilakukan dalam proses Map disebut Fungsi Map, dan yang memuat kalkulasi yang akan dikerjakan oleh proses Reduce disebut Fungsi Reduce. Jadi, seorang programmer yang akan menjalankan MapReduce harus membuat program Fungsi Map dan Fungsi Reduce.
Fungsi Map bertugas untuk membaca input dalam bentuk pasangan Key/Value, lalu menghasilkan output berupa pasangan Key/Value juga. Pasangan Key/Value hasil fungsi Map ini disebut pasangan Key/Value intermediate. Kemudian, fungsi Reduce akan membaca pasangan Key/Value intermediate hasil fungsi Map, dan menggabungkan atau mengelompokkannya berdasarkan Key tersebut. Lain katanya, tiap Value yang memiliki Key yang sama akan digabungkan dalam satu kelompok. Fungsi Reduce juga menghasilkan output berupa pasangan Key/Value.
Untuk memperdalam pemahaman, mari kita simak satu contoh. Taruhlah kita akan membuat program MapReduce untuk menghitung jumlah tiap kata dalam beberapa file teks yang berukuran besar (Gambar 2). Dalam program ini, fungsi Map dan fungsi Reduce dapat didefinisikan sebagai berikut:
      map(String key, String value):
            //key : nama file teks.
            //value: isi file teks tersebut.
            for each word W in value:
                  emitIntermediate(W,"1");
      reduce(String key, Iterator values):
            //key : sebuah kata.
            //values : daftar yang berisi hasil hitungan.
            int result = 0;
            for each v in values:
                  result+=ParseInt(v);
            emit(AsString(result)); 
Hasil akhir  dari program ini adalah jumlah dari tiap kata yang terdapat dalam file teks yang dimasukkan sebagai input program ini.
Gambar 2. Menghitung jumlah tiap kata dalam suatu dokumen.
 
Menjalankan Contoh Program MapReduce
Untuk lebih jelasnya lagi, kita bisa menjalankan langsung program ini di PC kita sendiri. Tetapi, bukan dengan software MapReduce milik Google. Sampai saat ini Google tidak pernah mendistribusikan software MapReduce miliknya. Namun demikian, Apache telah merilis software open source yang dikenal dengan nama Hadoop untuk mengebangkan dan menjalankan aplikasi MapReduce. Secara garis besar Hadoop terdiri atas HDFS (Hadoop Distributed File System) dan Hadoop MapReduce. HDFS adalah versi open source-nya GFS (Google File System), dan Hadoop MapReduce adalah versi open source dari Google MapReduce.
Ada tiga cara untuk menjalankan aplikasi MapReduce dengan menggunakan Hadoop, yaitu:
1. Dengan menggunakan Hadoop mode Standalone pada 1 PC Windows.
2. Dengan menggunakan Hadoop mode Pseudo-Distributed pada 1 PC Linux.
3. Dengan menggunakan Hadoop mode Terdistribusi Penuh pada beberapa PC Linux.
Cara yang paling mudah mungkin cara yang pertama, karena dapat dilakukan pada satu PC Windows dan tidak memerlukan setting pada file konfigurasi Hadoop.
 
Referensi:
“MapReduce: Simplified Data Processing on Large Clusters”, Jeffrey Dean and Sanjay Ghemawat, Google Corp. 2004.
 

Leave a Reply

Subscribe to Posts | Subscribe to Comments

- Copyright © 2013 ASAL ASAL - Devil Survivor 2 - Powered by Blogger - Designed by Johanes Djogan -